

# **Grade 11 Mathematics Sample Performance Task Student Worksheet**

### SPEEDING TICKETS

New York state wants to change its system for assigning speeding fines to drivers. The current system allows a judge to assign a fine that is within the ranges shown in Table 1.

**Table 1. New York Speeding Fines** 

| Miles per Hour over<br>Speed Limit | Minimum Fine | Maximum Fine |
|------------------------------------|--------------|--------------|
| 1 - 10                             | \$45         | \$150        |
| 11 - 30                            | \$90         | \$300        |
| 31 or more                         | \$180        | \$600        |

Some people have complained that the New York speeding fine system is not fair. The New Drivers Association (NDA) is recommending a new speeding fine system. The NDA is studying the Massachusetts system because of claims that it is fairer than the New York system.

**Table 2. Massachusetts Speeding Fines** 

| Miles per Hour over<br>Speed Limit | Fine                                  |  |
|------------------------------------|---------------------------------------|--|
| 1 - 10                             | \$100 flat charge                     |  |
| 11 or more                         | \$100 flat charge plus \$10 for each  |  |
|                                    | additional mph above the first 10 mph |  |

In this task, you will:

- analyze the speeding fine systems for both New York and Massachusetts.
- use data to propose a fairer speeding fine system for New York state.



### 1. Part A

Use the information in Table 2 to plot data points for Massachusetts speeding fines.

- Plot a point to represent the fine for driving 5 mph over the speed limit.
- Plot additional points for each increment of 5 mph over the speed limit up to 45 mph over the speed limit.





## 2. Part B

Create an equation to calculate the Massachusetts speeding fine, f, based on the number of miles per hour, m, over the speed limit when  $1 \le m \le 10$ .





### 3. Part C

Create an equation to calculate the Massachusetts speeding fine, f, based on the number of miles per hour, m, over the speed limit when m > 10.





**4.** The graph below shows data from a sample of actual fines for driving above the speed limit in New York.

### Part A

Use the Connect Line tool to create a piecewise linear model with two line segments, one for  $1 \le m \le 20$  and one for  $20 \le m \le 40$ , that approximates the best fit for the data.





### 5. Part B

Using your model from part A, create an equation to calculate the speeding fine, f, based on the number of miles per hour, m, over the speed limit when  $1 \le m \le 20$ .

This equation will be the start of the proposed new model for the New York speeding fine system.





## 6. Part C

Using your model from part A, create an equation to calculate the speeding fine, f, based on the number of miles per hour, m, over the speed limit when m > 20.

This equation will complete the proposed new model for the New York speeding fine system.

| $\bullet \bullet \bullet \bullet \otimes$ |
|-------------------------------------------|
| 1 2 3 f m                                 |
| 4 5 6 + - × ÷                             |
|                                           |
| 0 π i                                     |
| sin cos tan arcsin arccos arctan          |



| 7. | The NDA claims that the proposed new model for the New York speeding fine system is fairer than the current system. |  |  |
|----|---------------------------------------------------------------------------------------------------------------------|--|--|
|    | Do you agree or disagree with the claim? Explain your reasoning using specific examples from this task.             |  |  |
|    |                                                                                                                     |  |  |
|    |                                                                                                                     |  |  |